Histone deacetylase 1 can repress transcription by binding to Sp1.

نویسندگان

  • A Doetzlhofer
  • H Rotheneder
  • G Lagger
  • M Koranda
  • V Kurtev
  • G Brosch
  • E Wintersberger
  • C Seiser
چکیده

The members of the Sp1 transcription factor family can act as both negative and positive regulators of gene expression. Here we show that Sp1 can be a target for histone deacetylase 1 (HDAC1)-mediated transcriptional repression. The histone deacetylase inhibitor trichostatin A activates the chromosomally integrated murine thymidine kinase promoter in an Sp1-dependent manner. Coimmunoprecipitation experiments with Swiss 3T3 fibroblasts and 293 cells demonstrate that Sp1 and HDAC1 can be part of the same complex. The interaction between Sp1 and HDAC1 is direct and requires the carboxy-terminal domain of Sp1. Previously we have shown that the C terminus of Sp1 is necessary for the interaction with the transcription factor E2F1 (J. Karlseder, H. Rotheneder, and E. Wintersberger, Mol. Cell. Biol. 16:1659-1667, 1996). Coexpression of E2F1 interferes with HDAC1 binding to Sp1 and abolishes Sp1-mediated transcriptional repression. Our results indicate that one component of Sp1-dependent gene regulation involves competition between the transcriptional repressor HDAC1 and the transactivating factor E2F1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Histone deacetylase-1 represses transcription by interacting with zinc-fingers and interfering with the DNA binding activity of Sp1.

Sp1 activates the transcription of many cellular and viral genes, and histone deacetylase 1 (HDAC1) removes the acetyl group of nucleosomal core histones. Treatment of cells with the histone deacetylase 1 inhibitor, TSA, robustly activates the transcription of the Sp1-dependent promoters, suggesting the inhibition of Sp1 activity which is critical in the activation of transcription, by HDAC1. W...

متن کامل

Rb Interacts with Histone Deacetylase to Repress Transcription

Previously, we found that Rb can actively repress transcription of cell cycle genes by binding and inactivating transcription factors at the promoter. Here, we demonstrate that Rb can also repress transcription of endogenous cell cycle genes containing E2F sites through recruitment of histone deacetylase, which deacetylates histones on the promoter, thereby promoting formation of nucleosomes th...

متن کامل

Myc represses the p21(WAF1/CIP1) promoter and interacts with Sp1/Sp3.

The cyclin-dependent kinase inhibitor p21((WAF1/CIP1)) inhibits proliferation both in vitro and in vivo, and overexpression of p21 in normal and tumor cell lines results in cell cycle arrest. In contrast, ectopic expression of Myc alleviates G(1) cell cycle arrest. Recent studies showed that Myc can repress p21 transcription, thereby overriding a p21-mediated cell cycle checkpoint. We found tha...

متن کامل

Mediates Breast Tumor Suppression Transcription Repressor Activity of Spleen Tyrosine Kinase

Spleen tyrosine kinase (SYK) is a candidate tumor suppressor gene in breast. Loss of SYK expression in breast tumors as a result of DNA hypermethylation promotes tumor cell proliferation and invasion and predicts shorter survival of breast cancer patients. We previously reported that, in addition to its well-known cytoplasmic localization, the full-length Syk is also present in the nucleus and ...

متن کامل

Transcription repressor activity of spleen tyrosine kinase mediates breast tumor suppression.

Spleen tyrosine kinase (SYK) is a candidate tumor suppressor gene in breast. Loss of SYK expression in breast tumors as a result of DNA hypermethylation promotes tumor cell proliferation and invasion and predicts shorter survival of breast cancer patients. We previously reported that, in addition to its well-known cytoplasmic localization, the full-length Syk is also present in the nucleus and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 19 8  شماره 

صفحات  -

تاریخ انتشار 1999